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Linear stability analysis of rapid granular flow
down a slope and density wave formation
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The linear stability of rapid granular flow down a slope under gravity to the longit-
udinal perturbations is analysed using hydrodynamic equations. It is demonstrated
that the steady flow uniform along the flow direction becomes unstable to long-
wavelength perturbations longitudinal to the flow direction for certain parameter
ranges to form a density wave, in contrast to the finite-wavelength instability for
transverse perturbations (Forterre & Pouliquen 2002). It is shown that the instability
can be understood as the long-wave instability of kinematic waves in a quasi-one-
dimensional system. The results are compared with our previous molecular dynamics
simulations (Mitarai & Nakanishi 2001), where spontaneous density wave formation
was found.

1. Introduction
Granular flow exhibits a variety of dynamical phenomena, which have been

attracting research interest for many years (for reviews, see e.g. Savage 1984 and
Jaeger, Nagel & Behringer 1996). Its complex behaviour can be seen even in a simple
situation like the gravitational flow on a slope. When the inclination angle is large
and the slope is rough, a rapid and relatively low-density flow is realized, and the
interaction between grains is dominated by inelastic collisions. On the other hand,
when the inclination angle is small, the flow becomes dense and slow, and the frictional
interaction plays an important role (Savage 1984; Mitarai & Nakanishi 2003). The
comprehensive rheology of the granular flow has not been fully understood yet,
except for the rapid collisional flow regime, where hydrodynamic models have been
developed with constitutive relations based on the kinetic theory of inelastic hard
spheres (Jenkins & Savage 1983; Campbell 1990; Lun et al. 1984; Goldhirsh 2003);
it has been demonstrated that some quantitative agreement can be achieved for the
steady flow by introducing the spinning motion of each grain (Mitarai, Hayakawa &
Nakanishi 2002). The steady granular flow, however, turns out to be unstable in
various ways, and shows rich phenomena.

In an experiment on a shallow granular flow on a wide slope, Forterre & Pouliquen
(2001) have observed that a regular pattern of longitudinal streaks appears along the
flow direction. This phenomenon has been analysed by means of the hydrodynamic
equations for rapid granular flow (Forterre & Pouliquen 2002). They have calculated
the steady solutions and examined their linear stability numerically. They have found
that, at a certain parameter region, the steady flow shows the ‘inverted density profile’,
in which the maximum density appears not at the bottom but at a finite distance
from the bottom because of the agitation by collisions with the rough solid bottom.
It has been shown that the solutions with the ‘inverted density profile’s are unstable
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to perturbations transverse to the flow direction, and the instability results in vortex
patterns analogous to the rolls in the Rayleigh–Bérnard convection; the streaks found
in the experiment were interpreted as the result of rolls of vortices.

Another instability that has been observed is density wave formation along the flow
direction; experimentally, Louge & Keast (2001) have observed jamming patterns
travelling upstream in the dense chute flow, and Prasad, Pal & Römkens (2000)
have found that waves develop in the shallow flow as they travel downstream. The
present authors have performed molecular dynamics simulations of two-dimensional
granular flow on a slope and found that the steady flows are unstable to density wave
formation when the length of the slope is long enough and/or the particle density is
low enough (Mitarai & Nakanishi 2001).

The purpose of this paper is to perform the linear stability analysis on the
hydrodynamic equations to investigate the nature of the density wave formation
instability found in the experiments and the numerical simulations. The basic method
is the same as that used in Forterre & Pouliquen (2002), but we examine the stability
to perturbations longitudinal to the flow direction whereas Forterre & Pouliquen
(2002) studied transverse stability.

This paper is organized as follows. In § 2, the hydrodynamic model for rapid
granular flow is introduced. The steady solutions are numerically obtained in § 3,
and the results of the linear stability analysis are presented in § 4. In § 5 a discussion
and comparison with the molecular dynamics simulations are given. The results are
summarized in § 6.

2. Hydrodynamic equations for granular flows
2.1. Hydrodynamic equations and constitutive relations

The hydrodynamic fields for granular flows in three dimensions are the mass density
ρ, the mean velocity u, and the granular temperature T , where T = 〈δu2〉/3. Here,
δu = u − 〈u〉 and 〈. . .〉 represents the average over the microscopic scale. Under
gravity, they follow (

∂

∂t
+ u · ∇

)
ρ = −ρ ∇ · u, (2.1)

ρ

(
∂

∂t
+ u · ∇

)
u = ρg − ∇ · Σ, (2.2)

3

2
ρ

(
∂

∂t
+ u · ∇

)
T = −∇ · q − Σ : ∇ u − Γ, (2.3)

with the acceleration due to gravity g, the stress tensor Σ , the heat flux q, and the
energy loss Γ due to the inelastic nature of interactions between grains.

We employ the constitutive relations derived by Lun et al. (1984) for a three-
dimensional system based on the kinetic theory of inelastic particles:†

Σ = (p − ζ ∇ · u)I − 2µS, (2.4)

q = −κ ∇ T , (2.5)

† The original form of q derived by Lun et al. (1984) is q = −κ ∇ T − κh ∇ ν. The coefficient κh

is proportional to (1 − ep), thus disappears in the elastic limit. We checked that the influence of the
term κh ∇ ν on the steady solutions is small in the parameter region considered, therefore neglected
this term as did Forterre & Pouliquen (2002).
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f1(ν) = ν(1 + 4ηνg0(ν))

f2(ν) =
5π1/2

96η(2 − η)

(
1 + 8

5
ηνg0(ν)

) (
1

g0(ν)
+ 8

5
η(3η − 2)ν

)
+

8

5π1/2
ην2g0(ν)

f3(ν) =
8

3π1/2
ην2g0(ν)

f4(ν) =
25π1/2

16η(41 − 33η)

(
1 + 12

5
ηνg0(ν)

)(
1

g0(ν)
+ 12

5
η2(4η − 3)ν

)
+

4

π1/2
ην2g0(ν)

f5(ν) =
12

π1/2
ν2g0(ν)

f6(ν) =

√
3πνg0(ν)

2νmf4(ν)

f7(ν) =
πνg0(ν)

2
√

3νmf2(ν)

Table 1. Dimensionless functions used in the constitutive relations and the boundary
conditions with η ≡ (1 + ep)/2.

where

S = 1
2
[∇ u + (∇ u)t ] − 1

3
(∇ · u)I, (2.6)

and

p(ν, T ) = ρpf1(ν)T , µ(ν, T ) = ρpσf2(ν)T 1/2, ζ (ν, T ) = ρpσf3(ν)T 1/2,

κ(ν, T ) = ρpσf4(ν)T 1/2, Γ (ν, T ) =
ρp

σ

(
1 − e2

p

)
f5(ν)T 3/2,


 (2.7)

with the material density of particle ρp , the packing fraction ν = ρ/ρp , the particle
diameter σ , and the restitution coefficient between particles ep . Here, I represents the
unit matrix. The dimensionless functions fi(ν) (i = 1, . . . , 5) are given in table 1.
For the radial distribution function g0(ν) in these functions, we adopted the form
suggested by Lun & Savage (1986):

g0(ν) =
1

(1 − ν/νm)2.5νm
, (2.8)

with the maximum solid fraction νm, for which we use 0.60 as in Forterre & Pouliquen
(2002).

In the following, all the variables are non-dimensionalized by the length unit σ ,
the mass unit ρpσ 3, and the time unit

√
σ/g. The density field is expressed by the

packing fraction ν instead of the mass density ρ. The restitution coefficient between
particles is set to be ep = 0.7, the value used in our previous simulations (Mitarai &
Nakanishi 2001).

2.2. Boundary conditions

The granular flow has a non-zero slip velocity at the solid boundary, where we should
impose the momentum and the kinetic energy balances. Sophisticated boundary
conditions have been proposed based on microscopic calculations of kinetic theory
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for specific geometries (Jenkins & Richman 1986; Richman 1988; Jenkins 1992). We
employ, however, a simpler form of the boundary condition obtained from a heuristic
approach (Johnson & Jackson 1987; Johnson, Nott & Jackson 1987):

−n · Σ · t = η∗(ν, T )|us |, (2.9)

n · q = −us · Σ · n − Γ ∗(ν, T ), (2.10)

where the unit vector n is normal to the floor, us is the slip velocity at the floor, and
t = us/|us | is the unit vector in the direction of the slip velocity.

The first equation, (2.9), expresses that the stress at the boundary balances with the
momentum transfer due to the collisions between the slope and the flowing grains.
The momentum transfer, or right-hand side of (2.9), is assumed to be given by

η∗(ν, T )|us | =
π

6
φ|us |Ω(ν, T ), (2.11)

with the collision rate Ω(ν, T ) per unit time per unit area. Here, the factor π/6 comes
from the non-dimensionalization of the particle mass m = ρpσ 3π/6. The parameter φ

characterizes the roughness of the boundary, and the expression means that a fraction
φ of particle momentum is transferred to the boundary in each collision: therefore, a
larger value of φ represents a rougher boundary. For the rough boundary in a two-
dimensional system with close-packed disks, Jenkins & Richman (1986) estimated
φ ≈ 0.1, but Forterre & Pouliquen (2002) adopted the smaller value φ = 0.05 for
most of the cases because they expected that a boundary with close-packed spheres
in a three-dimensional system is smoother on average. In this paper, we mainly use
φ = 0.05, but the case of φ = 0.10 is also examined in order to see general trends.

The second equation, (2.10), represents the energy balance, and indicates that the
heat flux at the boundary comes from two effects, namely the frictional heating due
to the non-zero slip velocity and the energy loss due to inelastic collisions with the
floor. The energy loss term Γ ∗ in (2.10) is given by

Γ ∗ = Φ
π

6

3

2
T Ω(ν, T ) (2.12)

with the collision rate Ω(ν, T ). The parameter Φ represents the rate of energy loss
per collision,† and we use Φ = 0.39 in this paper.

For the collision rate Ω(ν, T ), we use the form adopted by Forterre & Pouliquen
(2002), i.e. Ω(ν, T ) =

√
3T νg0(ν)/νm: then the expressions for η∗(ν, T ) and Γ ∗(ν, T )

in non-dimensionalized form are

η∗(ν, T ) = φf7(ν)f2(ν)T 1/2, (2.13)

Γ ∗(ν, T ) = 1
2
Φf6(ν)f4(ν)T 3/2, (2.14)

where the dimensionless functions f6(ν) and f7(ν) are given in table 1.
At infinity, we impose the condition that the stress and the heat flux vanish, namely

Σ → 0 and q → 0 as y → ∞, (2.15)

where the y-axis is taken perpendicular to the floor (figure 1).

† Johnson & Jackson (1987) explicitly relate Φ to the restitution coefficient between the floor
and the particles ew in the form Φ = (1 − e2

w), but we adopt (2.12) as a more general expression.
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Figure 1. The coordinate system.

3. Steady flows
3.1. Equations and numerical method

First, we consider the steady solution which is uniform along the slope for (2.1)–(2.3)
with the boundary conditions (2.9), (2.10), and (2.15) in the form

ν(x, y, z, t) = ν0(y), (3.1)

u(x, y, z, t) = (u0(y), 0, 0), (3.2)

T (x, y, z, t) = T0(y), (3.3)

where we take the x-axis along the slope, the y-axis perpendicular to the floor, and
the z-axis perpendicular to the (x, y)-plane (figure 1).

Then, equations (2.1)–(2.3) are written as

0 = ν0 sin θ −
dΣ0

xy

dy
, (3.4)

0 = −ν0 cos θ −
dΣ0

yy

dy
, (3.5)

0 = −Σ0
xy

du0

dy
−

dq0
y

dy
− Γ 0, (3.6)

where the superscript 0 denotes that the functions are for the steady solution, namely
q0 = −κ(ν0, T0) ∇ T0 = (0, q0

y , 0), etc. By integrating (3.4) and (3.5) over y with the
stress-free condition at infinity, we obtain the condition

Σ0
xy = − tan θ Σ0

yy. (3.7)

From (3.4)–(3.7) and the constitutive relations, we have

ν ′
0(y) = −f 0

1 T ′
0 + ν0 cos θ

f 0
1,νT0

, (3.8)

u′
0(y) =

f 0
1 T

1/2
0

f 0
2

tan θ, (3.9)

T ′′
0 (y) =

1

f 0
4

[(
1 − e2

p

)
f 0

5 T0 − f 0
2 u′

0 − f 0
4,νν

′
0T

′
0 − (T ′

0)
2

2T0

f 0
4

]
, (3.10)

where f 0
i ≡ fi(ν0), f 0

i,ν ≡ (d/dν)fi(ν)|ν=ν0
, and the prime indicates the derivative by

its argument.
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The boundary conditions (2.9) and (2.10) at the floor (y = 0) for the steady solution
can be written as

T0 =

(
φf 0

2 f 0
7

f 0
1 tan θ

u0

)2

, (3.11)

T ′
0 = −f 0

6

(
1
3
φu2

0 − 1
2
ΦT0

)
. (3.12)

The boundary condition (2.15) that the stress and the energy flux should vanish at
infinity is satisfied when (Ahn, Brennen & Sabersky 1992)

T ′
0(y) → 0 as y → ∞. (3.13)

In order to obtain the steady solutions, we integrate (3.8), (3.9), and (3.10) nume-
rically using the fourth-order Runge–Kutta method with the boundary conditions
(3.11) and (3.12). We employ the shooting method to find the solution which satisfies
the condition (3.13) (Forterre & Pouliquen 2002): for a given inclination angle θ and
a given density at the floor ν0(0), we search for a solution by adjusting the value of
the velocity at the floor u0(0). In the actual calculations, we integrate the equations
numerically from y = 0 to a certain height ymax, and search for the solution which
gives |T ′

0(ymax)| < 10−7. The value of ymax is chosen to be large enough in comparison
with the relaxation length, which depends on the parameters and can be determined
only after the solution is obtained.

We use θ and ν0(0) to specify the solution in the rest of the paper.

3.2. Numerical solutions

For a given roughness φ of the slope, steady solutions are found for a certain range
of the slope inclination angle θ (Forterre & Pouliquen 2002). We present the steady
solutions for two cases, (i) φ = 0.05 and (ii) φ = 0.10; most of the results are for
φ = 0.05, and the case of φ = 0.10 will be given to examine general trend.

3.2.1. The case of φ = 0.05

For an appropriate θ , there exist steady solutions for a given density at the floor
ν0(0). We numerically find the steady solution for the range 8◦ � θ � 20◦ for moderate
density; towards the lower limit of θ , the length scale of the density decay in the
y-direction tends to zero and becomes smaller than the particle diameter, which is
physically unacceptable, while the decay length of the density diverges towards the
upper limit of θ . This is consistent with the analysis by Anderson & Jackson (1992)
that the steady solution in the high-density limit is allowed for a finite range of θ .†

For a given steady solution, we define the ‘thickness’ h and the ‘mean density’ ν̄:
the thickness h is the value of y where the density is 1% of the maximum density,
and the mean density ν̄ is given by

ν̄ =
1

h

∫ ∞

0

ν0(y) dy. (3.14)

It has been found numerically by Forterre & Pouliquen (2002) that a one to one
correspondence exists between (θ, ν0(0)) and (h, ν̄).

Figure 2(a) shows the contour lines of θ in the (h, ν̄)-plane, where θ increases from
left to right. In this plot, it is clear that h goes to zero as θ decreases and h diverges

† Anderson & Jackson (1992) distinguished two cases of steady solutions, and our parameter
values are found to be in their “Case 1”.
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Figure 2. (a) The contour lines of θ in the (h, ν̄)-plane for φ = 0.05. The region of
non-monotonic density profiles is shown in grey. (b) The flux Q0 vs. the one-dimensional
density ρ̄0 for φ = 0.05. The solid line and the dashed line are for θ = 14◦ and θ = 16◦,
respectively.

as θ increases. There is a separatrix near the bottom at h ≈ 7, where the value of θ

is around 15◦; the contour line for θ � 14◦ tends to h = 0 as ν̄ decreases, while h

diverges along the contour lines for θ � 15◦ as ν̄ becomes small.
The difference between θ � 15◦ and θ � 14◦ can be seen in the relation between

the flux Q0 and the one-dimensional density ρ̄0 defined as

Q0 ≡
∫ ∞

0

ν0(y)u0(y) dy and ρ̄0 ≡
∫ ∞

0

ν0(y) dy, (3.15)

respectively, for a fixed inclination angle. It is found that Q0 is an increasing function
of ρ̄0 for θ � 14◦, while Q0 has a minimum at a finite ρ̄0 for θ � 15◦; the plot of Q0

vs. ρ0 is shown in figure 2(b) for θ = 14◦ and θ = 16◦.
Typical profiles of the density, the velocity, and the temperature for θ = 16◦ are

shown in figure 3 for the density at the floor ν0(0) = 0.04–0.15. We see in figure 3(a)
that the density decays monotonically when the density at the floor ν0(0) is small
enough (ν0(0) � 0.10), while for higher density (ν0(0) = 0.15) the maximum density
appears at a finite height. The region where the maximum density appears at a finite
height is shown in figure 2(a) as a grey region. We focus on the lower density region
because the density was found to decay monotonically in our previous simulation
(Mitarai & Nakanishi 2001; Mitarai et al. 2002).

For ν0(0) � 0.10, the higher density flow shows lower flow speed in the case of
θ = 16◦, which results in the decrease of the flux Q0 as ρ̄0 increases for ρ̄0 � 0.2
(figure 2b). For higher density (ν0(0) = 0.15 in figure 3), the flow speed increases with
ρ̄0, which causes the increase of the flux Q0 for higher ρ̄0. As a result, Q0 has a
minimum at a finite density.

In the case of θ � 14◦, the velocity continuously decreases as the density becomes
lower, and Q0 becomes an increasing function of ρ̄0.

3.2.2. The case of φ = 0.10

The slope is rougher than the previous case, and the steady solution exists for
12◦ � θ � 25◦. The contour lines for θ in the (h, ν̄)-plane are shown in figure 4(a).
As in the case of φ = 0.05, h goes to zero as the density becomes lower for smaller
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Figure 3. The steady solutions for φ = 0.05 and θ = 16◦: (a) density profiles; (b) velocity
profiles; (c) temperature profiles. Different line types correspond to solutions with different
densities: ν0(0) = 0.04 (solid lines), 0.05 (long-dashed lines), 0.08 (short-dashed lines), 0.10
(dotted lines), and 0.15 (dash-dotted lines).
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Figure 4. (a) The contour lines of θ in the (h, ν̄)-plane for φ = 0.10. The region of
non-monotonic density profiles is shown in grey. (b) Q0 vs ρ̄0 for φ = 0.10. The solid
line and the dashed line are for θ = 20◦ and θ = 21◦, respectively.

θ , while h diverges for smaller density when θ is large enough. Figure 4(b) shows the
ρ̄0 dependence of Q0, which is a monotonically increasing function for θ = 20◦ and
has a minimum for θ = 21◦. The typical solutions are shown for θ = 20◦ in figure 5.
For large enough h and ν̄, the maximum density appears at a finite distance from the
floor. The region of the non-monotonic density profile is shown by a grey region in
figure 4(a).

4. Linear stability analysis; density wave formation
4.1. Normal mode analysis

We restrict our stability analysis to a perturbation uniform along the z-direction,
because we are interested in the instability along the flow direction. The flow is
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Figure 5. The steady solutions for φ = 0.10 and θ = 20◦: (a) density profiles; (b) velocity
profiles; (c) temperature profiles. Different line types correspond to solutions with different
densities: ν0(0) = 0.10 (solid lines), 0.15 (long-dashed lines) 0.17 (short-dashed lines), and 0.20
(dotted lines).

perturbed around the steady solution as

ν(x, y, t) = ν0(y) + ν1(x, y, t), (4.1)

u(x, y, t) = (u0(y), 0, 0) + (u1(x, y, t), v1(x, y, t), 0), (4.2)

T (x, y, t) = T0(y) + T1(x, y, t). (4.3)

The governing equations and the boundary conditions are linearized with respect to
the deviations ν1, u1, v1, and T1; the resulting expressions are rather lengthy and given
in Appendix A.

Now we look for the normal modes for the density, the velocity, and the temperature
perturbations of the form

(ν1, u1, v1, T1) = Re[(ν̂(y), û(y), v̂(y), T̂ (y)) exp(αt + ikx)]. (4.4)

The flow is linearly unstable if Re(α) > 0.
As for the boundary condition at the free surface, the asymptotic behaviour of the

perturbations at large y is used. When y is much larger than the decay length of
the density and thus ν0(y) is very small, the density perturbation should also decay
(ν̂ ∝ ν0), and û, v̂, and T̂ decay proportionally to exp(−ky) (Forterre & Pouliquen
2002); therefore, we imposed the boundary condition that

û′(y) = −kû(y), v̂′(y) = −kv̂(y), T̂ ′(y) = −kT̂ (y), (4.5)

at y = ymax; ymax is a large enough height such that ν0(ymax) < 10−9, in addition to
the condition |T ′

0(ymax)| < 10−7 discussed in § 3.
We solve the eigenvalue problems of the linearized equations (A 1)–(A 4) for (4.4)

numerically using the Chebychev collocation method with the discretization in the y-
direction (Gottlieb, Hussaini & Orszag 1984; Canuto et al. 1988; Boyd 2001; Forterre
& Pouliquen 2002). It is known that the straightforward discretization of space
requires two extra boundary conditions (Malik 1990; Forterre & Pouliquen 2002),
for which we use the momentum balance condition in the y-direction at y = 0 and
the decay condition for the density perturbation, i.e. ν̂ ′(y) = −(cos θ/T0(y))ν̂(y) at
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Figure 6. The stability diagram for h vs. ν̄ for φ = 0.05, where the unstable (stable) regimes
are shown in grey (white). We find three unstable regimes A, B, and C. The dashed line shows
the boundary between the region of non-monotonic density profiles and that of the monotonic
density profiles (see also figure 2). The dispersion relations at the points P1–P5 are shown
in figures 7–9. The region of h < 1 where the stability boundary is shown by a dotted line
was not examined in detail because a flow with decay length less than the particle diameter is
physically unacceptable.

y = ymax. In the numerics, to solve the generalized eigenvalue problem in the form
AV = αBV for the complex eigenvalues α and the eigenvectors V , we used LAPACK
version 3.0 (Anderson et al. 1999). The discretization number Nd is about 100.

The numerically obtained eigenmodes contain unphysical modes, called spurious
modes, due to the discretization (Mayer & Powell 1992; Boyd 2001; Forterre &
Pouliquen 2002). For the spurious modes, it is known that the Chebychev coefficients
of higher wavenumber are large, and the eigenvalues are sensitive to small change
of Nd . We determine that the eigenmodes are physical ones by checking that their
Chebychev coefficients for higher wavenumber are small and their eigenvalues vary
little upon changing Nd . We confirmed that, for these modes, the highest ten coefficients
are less than 10−7 when the eigenvectors are normalized so that the sum of the absolute
values of the real part and the imaginary part of the largest component becomes one,
and the variation of the eigenvalues through small change of Nd are less than 10−7.

4.2. Stability diagram, dispersion relations, and eigenfunctions

We present the results of the linear stability analysis in the cases of φ = 0.05 and
φ = 0.10, for which the steady solutions are shown in § 3.2.

4.2.1. The case of φ = 0.05

The stability diagram is shown in figure 6 in the parameter space of h vs. ν̄.
The unstable (stable) regimes are shown by grey (white) regions, and the boundary
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Figure 7. The dispersion relations of the least stable mode for the steady solutions with
φ = 0.05 and θ = 16◦ for (a) ν0(0) = 0.05, (b) 0.08, and (c) 0.10, which correspond to the
points P1, P2, and P3 in figure 6, respectively.

between the regions of monotonic and non-monotonic density profiles is shown by a
dashed line. Within the investigated region, we find three unstable regimes: regime A
at small h and small ν̄; regime B at large h and small ν̄; and the regime C at large h

and large ν̄. When we decrease the density with a constant inclination angle (along a
contour in figure 2), we will eventually encounter either regime A or regime B, namely
a flow with low enough density is always unstable. The two regimes have different
steady flow behaviour as we have seen already: in regime A on the small-h side, the
flow becomes slower as the density becomes smaller, while in regime B on the large-h
side the flow is faster for the smaller density. On the other hand, the denser flow
can be unstable in regime C, which lies within the region of non-monotonic density
profiles. In this regime, the denser flow is faster as in regime A.

The dispersion relations of the least stable modes α = α(k) are shown in figure 7
for θ = 16◦ and ν0(0) = 0.05 (a), 0.08 (b), and 0.10 (c), which correspond to the
points P1, P2, and P3, respectively, in the stability diagram of figure 6; P1 lies within
the unstable regime B. In all cases, it is found that the least stable mode satisfies
α(0) = 0. The growth rate Re(α) is positive for ν0(0) = 0.05 for 0 < k � kc with
kc ≈ 0.007 (figure 7a). The magnification around k = 0 in figure 8 shows that Re(α)
grows quadratically in k for small k. As ν0(0) is increased, the maximum value of
Re(α) decreases and becomes negative for all k (figure 7b, c).

The dispersion relations for the unstable modes at P4 (in regime A) and at P5 (in
regime C) are shown in figure 9 for (θ, ν0(0)) = (14◦, 0.05) (a) and (17◦, 0.10) (b),
respectively. The instability occurs for the long-wavelength perturbation, and both of
the dispersion relations show that α(0) = 0 and a growth rate quadratic in k for small
k, i.e. Re(α(k)) ∝ k2; these features are the same as those in the unstable regime B.

The least stable eigenmodes for θ = 16◦ at k = 0.002 are shown for two cases:
the stable case of ν0(0) = 0.10 (P3 in figure 6) in figure 10 and the unstable case
of ν0(0) = 0.05 in the regime B (P1 in figure 6) in figure 11, over one wavelength
λ= 2π/k. The contours in figures 10(a) and 11(a) show the density eigenfunctions; the
lighter (darker) regions indicate positive (negative) regions, and the arrows represent
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Figure 8. A magnification of the dispersion relations near k = 0 of the unstable stable mode
for the steady solutions with φ = 0.05 and θ = 16◦ for ν0(0) = 0.05 at P1 in the regime
B. Re(α) grows quadratically in k, while the slope of Im(α) is given by −dQ0/dρ̄0 in the
long-wavelength limit, which is shown by a dashed line.
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Figure 9. The dispersion relations of the unstable mode for φ = 0.05 with (a) θ = 14◦ and
ν0(0) = 0.05 (P4; in regime A) and (b) θ = 17◦ and ν0(0) = 0.10 (P5; in regime C).

the corresponding velocity eigenfunctions. In both figures near y = 0, we see that the
velocity perturbations point in the positive (negative) x-direction in regions of nega-
tive (positive) density perturbation. The contours for the corresponding temperature
eigenfunctions plotted in figures 10(b) and 11(b) show that the regions where the
density perturbation is negative (darker regions in figures 10a and 11a) roughly
correspond to positive temperature perturbations (lighter regions in figures 10b and
11b).

The difference between the stable mode (figure 10) and the unstable mode (figure 11)
is seen if we focus on the divergence of the velocity perturbation. In the case of
the stable mode for ν0(0) = 0.10 (figure 10a), the grains flow into the region where
the density perturbation is negative (see the region around x ≈ λ/2 and y ≈ 2), thus
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Figure 10. The eigenfunctions of the least stable mode for φ = 0.05, θ = 16◦, and ν0(0) = 0.10
(P3 in figure 6), whose wavenumber is k = 0.002. λ is the wavelength of this eigenmode,
λ = 2π/k. Contours of (a) the density and (b) the temperature eigenfunctions are shown by
grey scale, where the lighter (darker) region corresponds to the larger positive (negative) value.
The arrows in (a) indicate the corresponding velocity eigenfunction. They shows that the grains
flow from the lighter region into the darker density region, namely the density perturbation
decays. Note that the temperature perturbation is negative in the region of positive density
perturbation.
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Figure 11. The eigenfunctions of the unstable mode for φ = 0.05, θ = 16◦, and ν0(0) = 0.05
(P1 in figure 6), whose wavenumber is k = 0.002. Contours of the density eigenfunction
and the velocity eigenfunction in (a) show that the grains flow from the region of negative
density perturbation into that of positive perturbation, namely the perturbation is amplified
and results in the formation of density wave. The temperature perturbation in (b) is negative
in the region of positive density perturbation.

the density perturbation has negative feedback. On the other hand, in the case of the
unstable mode for ν0(0) = 0.05 (figure 11a), the grains flow into the region where the
density perturbation is positive (see the region around x ≈ 0 and y ≈ 3). As a result,
the perturbation grows and eventually causes the nonlinear density wave.

The eigenfunctions of the unstable modes at P4 in regime A and at P5 in regime C
show some different characteristics from those at P1 in the regime B. Reflecting the
difference in the steady flow between regimes A and C and regime B, the denser parts
of the density eigenfunctions roughly correspond to the region where the velocity
fluctuation has positive component in the direction parallel to the mean flow. For all
three regimes, however, the unstable modes show that the grains flow into the region
of positive density perturbation; this suggests that the instability leads to the density
wave in regimes A and C as in regime B.
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Figure 12. The stability diagram for h vs. ν̄ with φ = 0.10, where the unstable (stable) regimes
are shown in grey (white). We find three unstable regimes A, B, and C. The dashed line shows
the boundary between the region of non-monotonic density profiles and that of monotonic
density profiles (see also figure 4). The dispersion relations at the points Q1–Q3 are shown in
figure 13.

4.2.2. The case of φ = 0.10

The stability diagram for φ = 0.10 is shown in figure 12. As in the case of φ = 0.05,
there are three unstable regimes, but the qualitative difference is that the unstable
regime C for large h and large ν̄ contains part of the region of monotonic density
profiles as well as that of non-monotonic density profiles. The dispersion relations
around the boundary of regime C are shown in figure 13 for θ = 20◦ and ν0(0) = 0.10
(a), 0.15 (b) and 0.17 (c), which correspond to the points Q1, Q2, and Q3, respectively,
in the stability diagram 12. It is seen that the instability occurs to the long-wavelength
perturbation.

The unstable eigenmodes for θ = 20◦ and ν0(0) = 0.17 (Q3 in figure 12) with
k = 0.002 are shown in figure 14. The density and velocity eigenfunctions indicate
that the grains flow into the region of positive density perturbation (see the region
around x ≈ λ/2, y ≈ 0; a magnification is shown (c)); thus the density perturbation
will grow. The difference from the case in figure 11 is that the velocity perturbation
at the floor (y = 0) is in the positive x-direction in the region of positive density
perturbation; namely, the particles flow faster in the region where they become dense.

5. Discussion
We have calculated the steady flow solutions and examined their linear stability

under a longitudinal perturbation in the cases of φ = 0.05 and φ = 0.10. The linear
stability analysis revealed that there are three unstable regimes, A, B, and C, in the
(h, ν̄)-plane in both cases. Regimes A and B are in the small-ν̄ region, while regime
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Figure 13. The dispersion relations of the least stable mode with φ = 0.10 and θ = 20◦ for
ν0(0) = 0.10 (a); 0.15 (b); 0.17 (c), which correspond to the points Q1, Q2, and Q3 in figure 12,
respectively.
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Figure 14. The eigenfunctions of the unstable mode for φ = 0.10, θ = 20◦, and ν0(0) = 0.17
(Q3 in figure 12), whose wavenumber is k = 0.002. Contours of the density eigenfunction and
the velocity eigenfunction in (a) show that the grains flow into the region of the positive density
perturbation. In (b), contours of the temperature perturbation are shown. (c) A magnification
of (a) around x ≈ λ/2, y ≈ 1.

C is in the large-ν̄ region. The difference between regimes A and B is the density
dependence of the flow velocity: the denser flow is faster in regime A, while the flow
with lower density is faster in regime B. Regime C lies within the region where the
density profile is non-monotonic in the case of φ = 0.05, but includes part of the
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region of monotonic density profiles for φ = 0.10, although the region of regime C
roughly corresponds with that of non-monotonic density profiles. In all the regimes,
the dispersion relation of the unstable mode shows the features that (i) α(0) = 0 and
(ii) Re(α(k)) ∝ k2 for small k. The unstable eigenmodes obtained suggest that the
instability causes a density wave.

In this section, we discuss the mechanism of the instability, a compare with
simulations, and the relationship with the transverse instability studied by Forterre &
Pouliquen (2002).

5.1. Mechanism of the instability

5.1.1. Kinematic wave and the long-wave instability

The long-wavelength instability which results in a density wave is well-known
for quasi-one-dimensional flows, such as wave formation in film flow (Smith 1993;
Ooshida 1999), density wave formation in the granular flow in a narrow vertical pipe
(Raafat, Hulin & Herrmann 1996; Moriyama et al. 1998), and formation of jams
in traffic flow (Kerner & Konhäuser 1993; Bando et al. 1995; Mitarai & Nakanishi
2000a, b). This instability is closely related to the continuity of ‘density’ ρ̄ (the
thickness in the case of incompressible fluid, the density per unit length along the
pipe for granular flow, or the density of cars for traffic flow): ρ̄ obeys the equation of
continuity in the form

∂ρ̄(x, t)

∂t
+

∂Q(x, t)

∂x
= 0, (5.1)

where Q is the flux. The flux Q may be expressed in terms of ρ̄ and its spatial
derivatives, but may also depend on time especially when the inertia effect exists. In
the long-wavelength and the long-time limit, the effect of the spatial derivatives of
ρ̄ and inertia on Q may be neglected. Then the flux is determined by the density,
Q(x, t) = Q0(ρ̄(x, t)), and equation (5.1) becomes

∂ρ̄(x, t)

∂t
− c

∂ρ̄(x, t)

∂x
= 0 with c = −dQ0(ρ̄)

dρ̄
. (5.2)

The wave that can be described by this equation is called the kinematic wave
(Whitham 1974). The effect of inertia and spatial derivatives for small but non-zero
wavelength appears as the growth rate quadratic in k (Whitham 1974; Ooshida 1999),
which causes the instability to yield a density wave. The actual form of the flux
Q depends on the physical system, but we call the instability caused through this
mechanism ‘the long-wave instability’ after Smith (1993). Note that the unstable mode
caused by the long-wave instability has the following three features for the complex
growth rate α(k): (i) α(0) = 0, (ii) Re(α(k)) ∝ k2 for small k, and (iii) the phase velocity
of the least stable mode c = Im(α(k))/k is given by −dQ0/dρ̄ in the long-wavelength
limit.

The unstable modes obtained in the present analysis of the two-dimensional flow
down a slope satisfy all of the features (i), (ii) and (iii); (i) and (ii) have been already
pointed out in the text, and (iii) can be seen in figure 8(b) for φ = 0.05, ν0(0) = 0.05,
and θ = 16◦. In fact, (iii) can be demonstrated using (i) and the equation of continuity
(2.1) as shown in Appendix B.

These features strongly suggest that the longitudinal instability in the flow down a
slope is the long-wave instability of the kinematic wave in a quasi-one-dimensional
system for all of regimes A, B, and C.
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One may think that, in regime C, which lies in the region of non-monotonic
density profile in the case of φ = 0.05 (figure 6), the non-monotonic density profile
might play a crucial role in the instability as in the case of the transverse instability
of Rayleigh–Bérnard type, where the convection occurs due to the non-monotonic
density profile (Forterre & Pouliquen 2002; Carpen & Brady 2002); however, the fact
that regime C contains part of the region of monotonic density profile in the case of
φ = 0.10 (figure 12) suggests that the shape of the density profile does not determine
the instability. It should also be noted that the present longitudinal instability occurs
at long wavelength while the transverse instability appears at finite wavelength.

5.1.2. One-dimensional model

In order to confirm that the longitudinal instability is the long-wave instability
of the one-dimensional kinematic wave, we now try to reduce our two-dimensional
model into a one-dimensional model that preserves the major features of the original
model. In spite of the crudeness of our procedure, we will see the one-dimensional
model obtained has roughly the same stability diagram for the long-wave instability
of the kinematic wave.

We obtain the one-dimensional model by integrating the original equations in the
y-direction from 0 to ∞; the idea is similar to Valance & Pennec (1998), where
the one-dimensional model has been obtained for the flow in a vertical chute by
integrating the equations across the chute width.

We define the one-dimensional density ρ̄(x, t), the average velocity ū(x, t), and the
average temperature T̄ (x, t) as

ρ̄(x, t) ≡
∫ ∞

0

ν(x, y, t) dy, (5.3)

ρ̄(x, t)ū(x, t) ≡
∫ ∞

0

ν(x, y, t)u(x, y, t) dy, (5.4)

ρ̄(x, t)T̄ (x, t) ≡
∫ ∞

0

ν(x, y, t)T (x, y, t) dy. (5.5)

The one-dimensional equation of continuity obtained by integrating (2.1) is

∂t ρ̄ + ∂x(ρ̄ū) = 0, (5.6)

where ∂t and ∂x represent ∂/∂t and ∂/∂x, respectively. Equation (5.6) is in the form
of (5.1) with the flux Q(x, t) given by Q = ρ̄ū.

By integrating the x-component of the equation of motion (2.2), we obtain

∂t (ρ̄ū) + ∂x

∫ ∞

0

ν(x, y, t)u(x, y, t)2 dy

= ρ̄ sin θ + Σyx(ν(0), T (0), u(0)) − ∂x

(∫ ∞

0

Σxx(ν, T , u) dy

)
, (5.7)

which determines the evolution of Q = ρ̄ū. The second term on the right-hand side
is the shear stress at the floor and comes from the integration of ∂yΣyx .

To simplify (5.7), we make the following approximations: (i) Replace the second
term on the left-hand side by ρ̄ū2. (ii) Neglect the velocity in the y-direction, v,
and use the dilute-limit expressions for the pressure and viscosities in Σxx , namely
replace Σxx by νT − (4/3)f2(0)

√
T ∂xu, where the first term comes from the pressure

and the second term comes from the dilute limit of the shear viscosity. The second
viscosity ζ (ν, T ) is neglected because it is a higher-order quantity in ν (see (2.7)).
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(iii) Estimate the integration of the shear viscosity term by multiplying the integrand
by the decay length of the density (T/ cos θ), and replacing T by T̄ , u by ū, i.e. replace

(4/3)f2(0)
∫ ∞

0
(
√

T ∂xu) dy by H (T̄ )(4/3)f2(0)(
√

T̄ ∂xū), where H (T̄ ) = T̄ / cos θ .
Then we obtain the equation

∂t (ρ̄ū) + ∂x(ρ̄ū2) = ρ̄ sin θ+Σyx(ν(0), T (0), u(0)) − ∂x(ρ̄T̄ ) + (4/3)f2(0)∂x(H (T̄ )
√

T̄ ∂xū).

(5.8)

For the shear stress at the floor Σyx(ν(0), T (0), u(0)), we have the boundary condition
of momentum balance (2.9), i.e. Σyx(ν(0), T (0), u(0)) = −η∗(ν(0), T (0))u(0).

To close equations (5.6) and (5.8), we need the relation between (ν(0), T (0), u(0))
and (ρ̄, T̄ , ū), and the equation for the average temperature T̄ . We simply assume
that u(0) = ū and T (0) = T̄ , and we use the empirical relation between ν(0) and ρ̄

for steady flows; namely, we take ν(0) = F (ρ̄), with the form of F (ρ̄) determined
from the steady solution obtained numerically for a fixed θ and different values of
ν0(0) by using ν0(0) = F (ρ̄0) with ρ̄0 =

∫ ∞
0

ν0(y) dy. We further assume that T̄ is
also determined by the one-dimensional density ρ̄, rather than using the integrated
equation for the temperature. The form of T̄ = T̄ (ρ̄) is determined from the steady
flows, namely we assume T̄0 = (1/ρ̄0)

∫ ∞
0

ν0(y)T0(y) dy = T̄ (ρ̄0).
Now we finally obtain the one-dimensional model in the following form:

∂t ρ̄ + ∂x(ρ̄ū) = 0, (5.9)

ρ̄[∂t ū + ū∂xū] = a(ρ̄)[U (ρ̄) − ū] − ∂x(ρ̄T̄ (ρ̄)) + 4
3
f2(0)∂x

(
H (T̄ (ρ̄))

√
T̄ (ρ̄)∂xū

)
, (5.10)

where

a(ρ̄) = η∗(F (ρ̄), T̄ (ρ̄)), U (ρ̄) =
ρ̄ sin θ

a(ρ̄)
. (5.11)

In this model, the steady solution is given by ρ̄ = ρ0 = const. and ū = U (ρ0), and
the flux of the steady solution is given by q0 = ρ0U (ρ0). Equation (5.10) with (5.11)
shows that the velocity U (ρ0) is determined by the balance between the acceleration
due to the gravity and the drag force from the floor.

This model is almost the same form as the traffic flow model proposed by Kerner &
Konhäuser (1993), but with a different form of the function U (ρ̄). In the traffic flow
model, U (ρ̄) is often called the ‘optimal velocity function’, which defines the density
dependence of the car velocity and is usually a decreasing function. On the other
hand, in the case of granular flow on a slope, U (ρ̄) depends on the inclination angle
and the boundary condition at the floor, and can take various forms as can be seen
in the plot of ρ̄0 vs. Q0 ≈ q0 = ρ̄0U (ρ̄0)† in figures 2(b) and 4(b).

A linear stability analysis of the steady solution can be performed analytically (for
the traffic flow model, see e.g. Wada & Hayakawa 1998). It is easy to show that the
instability condition Re(α) > 0 yields

(a(ρ0)U
′(ρ0))

2k2 >

(
a(ρ0)

ρ0

+ µ̄(ρ0)k
2

)2

(ρ0T̄ (ρ0))
′k2, (5.12)

† The flux q0 in the one-dimensional model is not exactly the same as the flux Q0 in the original
two-dimensional flow, due to the approximations used to derive U (ρ̄).
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Figure 15. The stability diagram for (a) φ = 0.05 and (b) φ = 0.10 obtained from the
one-dimensional model. The unstable (stable) regimes are shown in grey (white). The dashed
line shows the boundary between the region of non-monotonic density profiles and that of
monotonic density profiles for the original model.

where µ̄(ρ0) ≡ (4/3)f2(0)H (T̄ (ρ0))
√

T̄ (ρ0) and the prime represents differentiation by
ρ0. The k → 0 limit of (5.12) gives the stability criterion,

(ρ0U
′(ρ0))

2 > (ρ0T̄ (ρ0))
′. (5.13)

The explicit form of the long-wavelength expansion of the dispersion relation for the
least stable mode is given by

α(k) = −(ρ0U (ρ0))
′ik +

ρ0

a(ρ0)
[(ρ0U

′(ρ0))
2 − (ρ0T̄ (ρ0))

′]k2 + O(k3), (5.14)

and we see that the phase velocity of this mode in the long-wavelength limit is given
by c = −(ρ0U (ρ0))

′ = −dq0/dρ0, which shows that this is a kinematic wave. The
instability arises when the coefficient of the k2 term becomes positive, which occurs if
the change of the velocity with respect to density fluctuation is too fast compared to
the effect of the pressure which reduces the density fluctuation. Note that the criterion
of the instability (5.13) does not depend on the shear viscosity term µ̄(ρ0) because it
only appears in the fourth-order term in k (see (5.12)); the approximation for that
term does not crucially affect on the criterion.

The stability diagrams for φ = 0.05 and φ = 0.10 obtained from this one-
dimensional model are shown in figure 15. In spite of the crude approximations
used in the derivation of the one-dimensional model, the stability diagrams are
qualitatively similar to those of the original model. The similarity further indicates
that density wave formation can be understood by the long-wave instability in quasi-
one-dimensional systems, as in film flow and traffic flow.

It should be noticed that, in this one-dimensional model, the effect of the parameters
in the original model, such as ep , φ, and Φ , is included more or less implicitly in
the functional forms of U (ρ̄) and T̄ (ρ̄) (φ also appears explicitly in (5.11) through
η∗), and the y-dependences of the variables also affect U (ρ̄) and T̄ (ρ̄) through the
integration. Any changes that affect U and T̄ result in changes of the unstable regions
(see criterion (5.13)), although the nature of the instability remains the same.
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Before concluding this subsection, let us make a few comments on the work by
Wang, Jackson & Sundaresan (1997) and Valance & Pennec (1998) on the stability
analysis of granular flow in a vertical chute using hydrodynamic models of rapid
granular flow; Wang et al. (1997) performed the linear stability analysis numerically
as in the present work, and Valance & Pennec (1998) analysed the density wave by
deriving a one-dimensional model from hydrodynamic equations for rapid flow.

In the analysis of Wang et al. (1997), a parameter region has been found where
the steady flow is unstable to a longitudinal long-wavelength perturbation and forms
a density wave (figures 9 and 10 in Wang et al. 1997). This instability might also be
understood as the long-wave instability observed in the present analysis. On the other
hand, they also found the instabilities for finite-wavelength perturbations, which has
not been observed here.

The analysis by Valance & Pennec (1998) shows a clear similarity between the
instability in the chute flow and in the slope flow. The one-dimensional model they
obtained has a mathematical structure and physical mechanism similar to those of
our one-dimensional model: the velocity of the steady solution is determined by the
balance of the gravitational acceleration and the drag force from the wall, and shows
the long-wave instability for which the criterion is determined by the change of the
velocity with respect to density fluctuations and the pressure term.

These results suggest that the instabilities in the vertical chute flow and the slope
flow are of the same class.

5.2. Comparison with molecular dynamics simulations

We find some qualitative agreements between the present results and our previous
simulations (Mitarai & Nakanishi 2001) as follows.

Our simulations were performed for a fixed inclination angle and a particular
roughness of the slope with the periodic boundary condition imposed along the flow
direction. Within the parameter region examined, the steady flow shows a monotonic
density profile (Mitarai et al. 2002), and the flow with lower density has higher
velocity.

It has been demonstrated that the density wave appears only in a long system with
low enough particle density. We have performed the simulations for several sets of the
slope length L and the particle number N . In the case of particle density Nσ/L ≈ 1.0
(single layer), a clear density wave is not formed for L = 250.5σ and L = 501σ ,
whereas a density wave appears for L = 1002σ . Upon changing the density with a
fixed system length L = 501σ , a density wave is formed when Nσ/L ≈ 0.75, while
the steady flow is stable for the denser cases with Nσ/L ≈ 1.0 and 2.0.

These trends of the simulations agree with the behaviour around the unstable
regime B of the present model on three points: (i) the flow with lower density is
faster; (ii) the flow with lower density is less stable; and (iii) the critical wavelength
for instability is very long.

Regarding (iii), the critical wavelength λc = 2π/kc is much longer than the particle
diameter: λc ≈ 900σ for θ = 16◦ and ν0(0) = 0.05, for example. This seems to
be comparable with our simulation results, where the critical slope length Lc was
between 500σ and 1000σ for Nσ/L ≈ 1.0. We do not understand yet how such a
small wavenumber arises, but we suspect that it comes from the long mean free path
in the large-y region where the density is low, namely the particles flying over the
clusters for a long distance prevent the growth of clusters at a smaller length scale.

Based on observations (i), (ii), and (iii), the parameters that we have simulated
happen to be in regime B, but if the simulations are performed with different
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densities, inclination angles, and/or boundary conditions at the floor, behaviour that
corresponds to regime A or C may be found.

5.3. Comparison with the stability analysis for the transverse perturbations

Forterre & Pouliquen (2002) examined the linear stability of granular flow on a
wide slope to perturbations transverse to the flow direction, in order to understand
the regular streak pattern along the flow direction observed in their experiments
(Forterre & Pouliqen 2001). They mainly focused on the parameter region where
the non-monotonic density profile (or what they call the ‘inverted density profile’)
is observed, because they expected that such a flow would be unstable and form
the vortex rolls from the analogy to the Rayleigh–Bérnard instability. They have
shown that the flow is unstable to transverse perturbations in a large part of the
parameter region where the inverted density profile is observed. The unstable mode
shows the vortex-like pattern, and they concluded that the streaks observed in the
experiments result from the rolls of vortices. They also found that the flow with a
monotonic density profile becomes unstable for some parameters, but the details were
not reported.

One of the differences between this transverse Rayleigh–Bérnard-type instability and
the longitudinal long-wave instability appears in the length scale of the instability.
The longitudinal instability occurs for long-wavelength perturbations in the long-time
behaviour as can be seen in the dispersion relations, while the transverse instability
occurs at a finite length scale comparable with the vortex roll. Our analysis shows
that there is a parameter region where both of the instabilities may occur, around
the region of non-monotonic density profiles (regime C). It should be interesting to
investigate whether the two instabilities interfere by a full three-dimensional analysis.

At large inclination angle, Forterre & Pouliquen (2002) also observed the square
lattice pattern. This phenomenon cannot be understood by the simple superposition
of the long-wave instability and the Rayleigh–Bérnard-type instability, because the
length scale of the long-wave instability is much longer than that of the lattice pattern.

6. Summary
Steady flows and their linear stability are analysed for granular flow on a slope

using the hydrodynamic model with constitutive relations derived from the kinetic
theory of inelastic spheres. We have mainly focused on the relatively low-density
region where the density decays monotonically.

The stability diagram shows three unstable regimes A, B, and C for both φ = 0.05
and φ = 0.10. Two of the unstable regimes, A and B, are in the lower density region,
and regime C is in the high-density region. The difference between regimes A and B is
that the denser flow is faster in regime A on the small-h side, while the flow with lower
density is faster in regime B on the large-h side. Regime C is in the large-h and large
ν̄-region; it lies within the region of non-monotonic density profile for φ = 0.05, while
it contains part of the region of monotonic density profiles for φ = 0.10, although the
region of regime C roughly corresponds to that of non-monotonic density profile. In
all regimes, the instability occurs for the long-wavelength perturbations and results
in the formation of a density wave. It has been found that the behaviour around the
unstable regime B agrees with the trends in our previous simulations of density wave
formation.

The dispersion of the complex growth rate α(k) has the features that (i)
α(0) = 0, (ii) Re(α(k)) ∝ k2 for small k, and (iii) Im(α(k))/k = −dQ0/dρ̄0 in the
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long-wavelength limit. These strongly suggest that the instability is the long-wave
instability of kinematic waves, which is often found in quasi-one-dimensional flows.
This is different from the transverse instability studied by Forterre & Pouliquen (2002),
where the flow is unstable at finite wavenumber.

In order to confirm that the instability is the long-wave instability of a kinematic
wave, we simplified the original equations rather heuristically to a one-dimensional
model, and showed that the long-wave instability occurs in the derived one-
dimensional model. The stability diagram obtained from the one-dimensional model
corresponds qualitatively to the one obtained from the original equations.

N.M. is grateful to Ooshida Takeshi for informative discussions. This work was
partially supported by Hosokawa powder technology foundation and Grant-in-Aid
for JSPS fellows.

Appendix A. Linearized equations
The linearized governing equations for the longitudinal perturbations (4.1)–(4.3)

and the boundary conditions are given (Forterre & Pouliquen 2002, see also Alam &
Nott 1998). The superscript 0 denotes that the quantities are for the steady solution.
The subscripts ν and T denote partial derivatives with respect to the variables

p0
ν = ∂p(ν, T )/∂ν|ν=ν0,T =T0

.

The subscript y indicates the total differential with respect to y, namely

p0
y = dp0(ν(y), T (y))/dy

=
[
∂p(ν, T )/∂ν|ν=ν0,T =T0

]
ν0,y +

[
∂p(ν, T )/∂T |ν=ν0,T =T0

]
T0,y, ν0,y = dν0(y)/dy,

and so on. The expressions for p(ν, T ), µ(ν, T ), ζ (ν, T ), κ(ν, T ), and Γ (ν, T ) are
given in (2.7), and ξ (ν, T ) = ζ − 2µ/3. Then, by inserting (4.1)–(4.3) into (2.1)–(2.3)
to (3.1)–(3.3), we obtain the following expressions:

[∂t + u0∂x]ν1 + [ν0∂x]u1 + [ν0,y + ν0∂y]v1 = 0, (A 1)[
sin θ − p0

ν∂x + u0,yyµ
0
ν + u0,yµ

0
ν,y + u0,yµ

0
ν∂y

]
ν1

+
[
−ν0∂t − ν0u0∂x + (ξ 0 + 2µ0)∂2

x + µ0
y∂y + µ0∂2

y

]
u1

+
[
−ν0u0,y + µ0

y∂x + (ξ 0 + µ0)∂x∂y

]
v1

+
[
−p0

T ∂x + u0,yyµ
0
T + u0,yµ

0
Ty + u0,yµ

0
T ∂y

]
T1 = 0, (A 2)[

− cos θ − p0
νy − p0

ν∂y + u0,yµ
0
ν∂x

]
ν1

+
[
ξ 0
y ∂x + ξ 0∂x∂y + µ0∂x∂y

]
u1

+
[
−ν0∂t − ν0u0∂x + ξ 0

y ∂y + ξ 0∂2
y + 2µ0

y∂y + 2µ0∂
2
y + µ0∂

2
x

]
v1

+
[
−p0

Ty − p0
T ∂y + u0,yµ

0
T ∂x

]
T1 = 0, (A 3)[

κ0
νyT0,y + κ0

ν T0,yy + κ0
ν T0,y∂y − Γ 0

ν + u2
0,yµ

0
ν

]
ν1

+
[
−p0∂x + 2µ0u0,y∂y

]
u1

+
[
− 3

2
ν0T0,y − p0∂y + 2µ0u0,y∂x

]
v1

+
[
− 3

2
ν0∂t − 3

2
ν0u0∂x + κ0∂2

x + κ0
y ∂y + κ0∂2

y

+ κ0
TyT0,y + κ0

T T0,yy + κ0
T T0,y∂y − Γ 0

T + u2
0,yµ

0
T

]
T1 = 0. (A 4)
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The linearized boundary conditions at y = 0 are obtained from (2.9) and (2.10) as

∂yu1 = φ
[
u0f

0
7,νν1 + f 0

7 u1

]
, (A 5)

∂yT1 = −f 0
6,ν

[
1
3
φu2

0 − 1
2
ΦT0

]
ν1 − f 0

6

[
2
3
φu0u1 − 1

2
ΦT1

]
. (A 6)

Appendix B. The long-wavelength limit of the phase velocity
We have obtained the dispersion relation of the least stable mode, α = α(k), and

numerically found that it satisfies

α(0) = 0. (B 1)

In this appendix, we show that the phase velocity of this mode, c = Im(α(k))/k,
satisfies

c = −dQ0

dρ̄0

(B 2)

in the long-wavelength limit (k → 0), which suggests the mode is a kinematic wave.
Here, ρ̄0 and Q0 are the one-dimensional density and the flux of the steady solution,
respectively, defined in (3.15).

Note that the derivative dQ0/dρ̄0 is taken within a family of solutions for a fixed
inclination angle as below. For a given inclination angle, the density at the floor
ν0(0) = β is a continuous parameter to specify a steady solution. To express the β

dependence explicitly, we rewrite the steady solutions as

ν(x, y, z, t) = ν0(y; β), (B 3)

u(x, y, z, t) = (u0(y; β), 0, 0), (B 4)

T (x, y, z, t) = T0(y; β). (B 5)

Then dQ0/dρ̄0 is given by

dQ0

dρ̄0

=
dQ0(β)/dβ

dρ̄0(β)/dβ
=

∫ ∞

0

[∂(ν0(y; β)u0(y; β))/∂β] dy

∫ ∞

0

[∂ν0(y; β)/∂β] dy

. (B 6)

In order to verify (B 2), let us first express c by eigenfunctions of the mode. By
linearization of the equation of continuity (2.1) using (4.4), we obtain the following
expression:

αν̂(y) = −ik (ν0(y; β)û(y) + u0(y; β)ν̂(y)) − ∂y(ν0(y; β)v̂(y)). (B 7)

Integrating (B 7) from y = 0 to ∞, we have

α

∫ ∞

0

ν̂(y)dy = −ik

∫ ∞

0

[ν0(y; β)û(y) + u0(y; β)ν̂(y)] dy. (B 8)

Here, ν̂(y), û(y), v̂(y), and T̂ (y) depend on the wavenumber k, and we expand these
functions with respect to k, i.e.

ν̂(y) = ν̂0(y) + ikν̂1(y) + · · · , û(y) = û0(y) + ikû1(y) + · · · , (B 9)

v̂(y) = v̂0(y) + ikv̂1(y) + · · · , T̂ (y) = T̂0(y) + ikT̂1(y) + · · · , (B 10)

where (ν̂i(y), ûi(y), v̂i(y), T̂i(y)) do not contain k. The long-wavelength expansion of
the dispersion relation α = α(k) which satisfies α(0) = 0 is obtained from (B 8) when
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0

ν̂0(y) dy = 0, and we have

α(k) = −ik

∫ ∞

0

[ν0(y; β)û0(y) + u0(y; β)ν̂0(y)] dy

∫ ∞

0

ν̂0(y) dy

+ O(k2). (B 11)

Namely, c is given by

c = −

∫ ∞

0

[ν0(y; β)û0(y) + u0(y; β)ν̂0(y)] dy

∫ ∞

0

ν̂0(y) dy

(B 12)

in the long-wavelength limit.
Now all we need to do is to express X̂0 ≡ (ν̂0, û0, v̂0, T̂0) with respect to the steady

solution X0(y; β) ≡ (ν0(y; β), u0(y; β), 0, T0(y; β)). Let us write (2.1)–(2.3) and the
boundary conditions in the matrix form:

B
∂X
∂t

= N(X). (B 13)

Here, X = (ν, u, v, T ), B is a constant matrix, and N is a nonlinear operator. A steady
solution X0(y; β) satisfies

N(X0(y; β)) = 0; (B 14)

therefore, from (4.4), X̂ = (ν̂, û, v̂, T̂ ) satisfies

∂ N(X))

∂X

∣∣∣∣
X=X0(y;β)

X̂ = α(k)B X̂, (B 15)

and expanding (B 15) in k with α(0) = 0, we have

∂ N(X))

∂X

∣∣∣∣
X=X0(y;β)

X̂0 = 0 (B 16)

for the lowest order of k. On the other hand, differentiating (B 14) by β , we obtain

∂ N(X))

∂X
|X=X0(y;β)

∂X0(y; β)

∂β
= 0. (B 17)

It is plausible that the mode of the zero eigenvalue for k = 0 does not degenerate,
because the mass is the only conserved quantity (the momentum is lost at the floor, and
the energy is dissipated). Thus, from (B 16) and (B 17), we obtain X̂0 ∝ ∂X0(y; β)/∂β ,
or more explicitly,

(ν̂0, û0, v̂0, T̂0) ∝
(

∂ν0(y; β)

∂β
,
∂u0(y; β)

∂β
, 0,

∂T0(y; β)

∂β

)
. (B 18)

Using (B 12) and (B 18), we obtain

c = −

∫ ∞

0

[ν0(y; β)(∂u0(y; β)/∂β) + u0(y; β)(∂ν0(y; β)/∂β)] dy

∫ ∞

0

(∂ν0(y; β)/∂β) dy

, (B 19)
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and by comparing this with (B 6), we have

c = −dQ0/dβ

dρ̄0/dβ
= −dQ0

dρ̄0

, (B 20)

which is (B 2).
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Prasad, S. N., Pal, D. & Römkens, M. J. M. 2000 Wave formation on a shallow layer of flowing
grains. J. Fluid Mech. 413, 89–110.

Raafat, T., Hulin, J. P. & Herrmann, H. J. 1996 Density waves in dry granular media falling
through a vertical pipe. Phys. Rev. E 53, 4345–4350.

Richman, M. W. 1988 Boundary conditions based upon a modified Maxwellian velocity distribution
for flows of identical, smooth, nearly elastic spheres. Acta Mechanica 75, 227–240.

Savage, S. B. 1984 The mechanics of rapid granular flows. Adv. Appl. Mech. 24, 289–366.

Smith, M. K. 1993 The mechanism for the long-wave instability in thin liquid films. J. Fluid Mech.
217, 469–485.

Valance, A. & Pennec, T. L. 1998 Nonlinear dynamics of density waves in granular flows through
narrow vertical channels. Eur. Phys. J. B 5, 223–229.

Wang, C., Jackson, R. & Sundaresan, S. 1997 Instabilities of fully developed rapid flow of a
granular material in a channel. J. Fluid Mech. 342, 179–197.

Wada, S. & Hayakawa, H. 1998 Kink solution in a fluid model of traffic flow. J. Phys. Soc. Japan
67, 763–766.

Whitham, G.B. 1974 Linear and nonlinear waves . John Wiley & Sons.


